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Convolution of Lorentz Invariant Ultradistributions
and Field Theory
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A general definition of convolution between two arbitrary four-dimensional Lorentz
invariant (fdLi) tempered ultradistributions is given, in both Minkowski and Euclidean
space (spherically symmetric tempered Ultradistributions). The product of two arbitrary
fdLi distributions of exponential type is defined via the convolution of its corresponding
Fourier transforms. Several examples of convolution of two fdLi tempered ultadisrti-
butions are given. In particular, we calculate exactly the convolution of two Feynman’s
massless prapagators. An expression for the Fourier transform of a Lorentz invariant
tempered ultradistribution in terms of modified Bessel distributions is obtained in this
work (generalization of Bochner’s formula to Minkowski space). From the deduction of
the convoltion formula, we obtain the generalization to the Minkowski space, of the di-
mensional regularization of the perturbation theory of Green functions in the Euclidean
configuration space given in Erdelyi (Higher Transcendental Functions, 1953). As an
example we evaluate the convolution of two n-dimensional complex-mass Wheeler
propagators.

KEY WORDS: Quantum field theory; foundations; formalism; functional analytical
methods; ultradistributions.

1. INTRODUCTION

The question of the product of distributions with coincident point singularities
isrelated in field theory, to the asymptotic behavior of loop integrals of propagators.

From a mathematical point of view, practically all definitions lead to limi-
tations on the set of distributions that can be multiplied together to give another
distribution of the same kind.

The properties of ultradistributions (Sebastiao e Silva, 1958; Hasumi, 1961)
are well adapted for their use in field theory. In this respect we have shown (Bollini,
Escobar, and Rocca, 1999) that it is possible to define in one-dimensional space, the
convolution of any pair of tempered ultradistributions, giving as a result another
tempered ultradistribution. The next step is to consider the convolution of any
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pair of tempered ultradistribution in n-dimensional space. This follows from the
formula obtained in (Bollini, Escobar, and Rocca, 1999) for one-dimensional space
(see Bollini and Rocca, hep-th).

However, the resultant formula is rather complex to be used in practical
applications and calculus. Then, for applications, it is convenient to consider the
convolution of any two tempered ultradistributions which are even in the variables
k°y p (see Bollini and Rocca, hep-th).

A further step is to consider the convolution of trwo Lorentz invariant tem-
pered ultradistributions (see Section 7).

Ultradistributions also have the advantage of being representable by means
of analytic functions. So that, in general, they are easier to work with them and, as
we shall see, have interesting properties. One of these properties is that Schwartz
tempered distributions are canonical and continuously injected into tempered ul-
tradistributions and as a consequence the rigged Hilbert space with tempered
distributions is canonical and continuously included in the rigged Hilbert space
with tempered ultradistributions.

This paper is organized as follow: in Sections 2 and 3, we define the distribu-
tions of exponential type and the Fourier transformed tempered ultradistributions.
Each of them is part of a Guelfand Triplet (or rigged Hilbert space (Gel’fand and
Vilenkin, 1964)) together with their respective duals and a “middle term” Hilbert
space. In Section 4, we give a general expression for the Fourier transform of
a spherically symmetric tempered ultradistributions and some examples of it. In
Section 5, we obtain the expression for the Fourier transform of Lorentz invariant
tempered ultradistributions and we give sosme examples of its use. In Section 6,
we give the general formula for the convolution to two spherically symmetric tem-
pered ultradistributions and followed by some examples. In particular we evaluate
exactly the convolution of two Feynman’s massless propagators. In Section 7,
we treat the convolution of two Lorentz invariant tempered ultradistributions in
Minkowski space. In Section 7.1, we give the generalization to Minkowski space
of the “dimensional regularization in configuration space” obtained in Bollini and
Giambiagi (1996). As an example of its use we evaluate convolution of two com-
plex mass Wheeler propagators. In Section 7.2, we treat the central topic of this
paper: the formula for the convolution of two Lorentz invariant tempered ultradis-
tributions. Finally, Section 8 is reserved for a discussion of the principal results.

2. DISTRIBUTIONS OF EXPONENTIAL TYPE

For the sake of the reader we shall present a brief description of the principal
properties of tempered ultradistributions.

Notations. The notations are almost textually taken from (Hasumi, 1961).
Let R" (resp. C") be the real (resp. complex) n-dimensional space whose points
are denoted by x = (x1, x2, ..., x,) (resp. z = (21, 22, . . ., Z,)). We shall use the
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notations:

1) x+y =01+ Y50+ Y20 X+ Ya)iex = (axg, axg, ..., 0x,)
(i1) x>0 means x; 20, x, >0, ...,x,2>0
(i) x -y =31 x;y;
() x| =Y, 1]
Let N" be the set of n-tuples of natural numbers. If p € N”, then p = (py,
D2, ..., Pn), and p; is a natural number, 1< j<n. p + g denote (p; + q1, p» +

q2,.--,Pn+qy,) and p>qg means p;>qi, p22q2, ..., Pn2qn. X7 means
x7'xy? ... x;". We shall denote by [p| = }"j_, p; and by D” we denote the dif-
ferential operator gpitpat. ﬂ’”/(’))cp1 9x57 ... 9xy".

) For any natural k we define x* = xkx§ .xKand 9% /axk = 8"k jaxkaxk ...
ax,.

The space H of test functions such that e”¥1|D?¢(x)| is bounded for any p
and ¢ is defined ([2]) by means of the countably set of norms

181, = sup eIDIG)L p=0.1.2,... 2.1
<q=p.x
According to [6] H is a IC{M,} space with
Mp(x) =P DM p=1,2,... (2.2)

IC{eP~ D1} satisfies condition (N) of Guelfand (Gel’fand and Vilenkin, 1964). It
is a countable Hilbert and nuclear space

K:{e(pfl)\xl} =H = m H, (2.3)

where H, is obtained by completing H with the norm induced by the scalar
product

00 p _
(@, 9), = / PPN DG DI (x)dx; p=1,2, ... (2.4)
o =
where dx = dx| dx, ...dx,.
If we take the usual scalar product

(@, ) = f $O)T (x) dx (2.5)

then H, completed with (2.5), is the Hilbert space H of square integral functions.
The space of countinuous linear functionals defined on H is the space A
of the distributions of the exponential type (Hasumi, 1961).
The “nested space”

D=H H A (2.6)
is a Guelfand’s triplet (or a Rigged Hilbert space, Gel’fand and Vilenkin, 1964).
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In addition we have: H C S C H C 8’ C A, where S is the Schwartz
space of rapidly decreasing test functions (Schwartz, 1996).

Any Guelfand’s triplet & = (®, H, ®') has the fundamental property that
a linear and symmetric operator on ®, admitting an extension to a self-adjoint
operator in H, has a complete set of generalized eigen-functions in ®’ with real
eigenvalues.

3. TEMPERED ULTRADISTRIBUTIONS

The Fourier transform of a function ® € H is
1 x -
o(z) = — / P(x)e' " dx 3.1
27 J_ o

¢(z) is entire analytic and rapidly decreasing on straight lines parallel to the real
axis. We shall call $ the set of all such functions.

H=FH} (3.2

Itis a Z{M} space (Gel’fand and Shilov, 1964a), countably normed and com-
plete, with

Mp(z) = (1 +|z])? (3.3)
£ is also a nuclear space with norms
¢l pn = sup(l + [z)”|p(2) (3.4)
zeV,
where Vy = {z = (z1,22,...,2,) € C" : |[Imz;| <k, 1< j<n}

We can define the usual scalar product

(B(), () = / S () dz = / S () dx 3.5)
where
() = / P O0e = dx

anddz =dz;dz,...dz,.

By completing §) with the norm induced by (3.5) we get the Hilbert space of
square integrable functions.

The dual of §) is the space U of tempered ultradistribtions (Hasumi, 1961). In
other words, a tempered ultradistribution is a continuous linear functional defined
on the space §) of entire functions rapidly decreasing on straight lines parallel to
the real axis.

The set A = (9, H, U) is also a Guelfand’s triplet.

Moreover, wehave: S CS CH C &' C U.
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U can also be characterized in the following way ([2]): let .A,, be the space
of all function F(z) such that

(i) F(z)is analytic for {z € C":|Im(z)|) p, Im(z2)])p, ..., |Im(z,)| > p}
(i) F(z)/zP is bounded continuous in {z € C":|Im(z})| 2 p, |Im(z;)| >
p, ..., |Im(z,)| = p}, where p =0, 1, 2, ... depends on F(z).
Let IT be the set of all z-dependent pseudo-polynomials, z € C".
Then U is the quotient space

(i) U = A, /11
By a pseudo-polynomial we understand a function of z of the form
ZSZf G(zy, ceos Zj—1s Zj+1s ..., zy)with G(zy, cees Zj—1s Zj+1s ..., Zy) € Aw

Due to these properties it is possible to represent any ultradistribution as
(Hasumi, 1961):

F(¢p) = (F(2), ¢(2)) = ﬁF(Z)¢(Z) dz (3.6)

I'=I1UTlLU---T, where the path I'; runs parallel to the real axis from —oo to
oo forIm(z;) > ¢, ¢ > p and back from oo to —oo for Im(z;) < —¢, —¢ < —p.
(" surrounds all the singularities of F(z)).

Formula (3.6) will be our fundamental representation for a tempered ultra-
distribution. Sometimes use will be made of “Dirac formula” for ultradistributions
(Sebastiao e Silva, 1958)

o
t
Foy= - / f@)
Qri)t ) oo (h —z1)(t2 — 22) -+ - (tw — Zn)
where the “density” f(¢) is such that

dt (3.7)

yng(ZkP(Z) dz =f fOe(r) dt (3.8)

While F(z) is analytic on I', the density f(#) is in general singular, so that the r.h.s.
of (3.8) should be interpreted in the sense of distribution theory.

Another important property of the analytic representation is the fact that on
I, F(z) is bounded by a power of z (Hasumi, 1961)

|F(2)| < Clz|P (3.9)

where C and p depend on F'.
The representation (3.6) implies that the addition of a pseudo-polynomial
P(z) to F(z) do not alter the ultradistribution

f{F(z) + P(2)}¢p(z) dz = f F()¢(z)dz + f P(2)¢(z) dz
r r r
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But
f P(2)¢p(z)dz =0
r

as P(z)¢(z) is entire analytic in some of the variables z, (and rapidly decreasing),

E yg{F(Z) + P(20)}¢(2) dz = yg F(2)¢(2) dz (3.10)
r r

4. THE FOURIER TRANSFORM IN EUCLIDEAN SPACE

The Fourier transform of a spherically symmetric function f € H is given,
according to Bochner’s formula by

Qr): [,
flk) = —=- fr2Juwa(kr) dr “.1)
k= Jo 2
where r = xg +xl2 + .- +x371;k = k(z) +k% -+ k‘ l,andj‘z_‘ is the Bessel

function of order v — 2/2. By the use of the equahty
AT 12(2) = €V K2 (—iz) + € VK2 (i) 4.2)
where IC is the modified Bessel function, (4.1) takes the form

£k = 2(2”)_

/ f(,);‘z "%"K%(—ikr)+e"%”IC%(z’kr)]dr 4.3)

By performing the change of variables x = re, 0= k2 (4.1), and (4.3) can be
rewritten as

foy =207 f Fx' s T (022 dix (44)
= ;

= B2 [ e ek et
p+ Jo

+ e"%vzc%(ixl/zplﬂ)] dx 4.5)

Here, we have taken p = y + io and

+y2+0? . -y +Vy*to?
p1/2= L—HSgn(o) YTy ron

4.6
> > (4.6)
We can extend (4.4) to the complex plane and obtain the correspondmg ultradistri-

bution. As a first step we calculate the Fourier antitrasform of p & J .- (x!1/2p1/2).
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We have
00 Nr(\ .
= o 12 )1/2y,=irt g =i & M _
4 v— 8 RN
27 J, 1Y JTZ(X p')e P = nxl/zr(i) e 4 2 a7
.7

We have used 6.631, (1) of Gradshtein and Ryzhik (2000) (M is the Whittaker func-
tion). Now we can use 9.233, (1), (2) of Gradshtein and Ryzhik (2000) and write

Ix F(%) in@d—v) ix
Mg o2 (_Z) T (vfz)e ¢ Wt v <4_t>

2
0 (3) e W (<) 120
2 T4 t
re inv—
Mes () = mge e ()
4¢ I (%52) 4t

r v in(\{z)W X 0 4.8
+<E>e o\ ) 10 (4.8)

As a second step we calculate the complex Fourier transform of the second term
of (4.7) using (4.8). We obtain

in(y 4
(t—i0)T . ix
fc [Wes M%'% <_E>j| (10)

= p"% [OL)Ie™ T Ko (—ix 21 — O1=3(p)le T K2 (i V2017

re)TeE

where we have used 7.629, (1), (2) of Gradshtein and Ryzhik (2000) and S is the
Lommel function (Watson, 1995, p. 349, formula 3). The corresponding ultradis-
tribution is then defined as

2%
" 1 Sou s 2 (x 1/2 1/2)} (4_9)

F(p)—(”)_f f(x)x4 ORI(P)e™ T Koz (—ix'/?p'/?)

— O[-J(p)le T K2 (ix'p '/2)} dx

2n > RPN 12 172
+ﬁ f(X).X 4 S%yv—z ()C P )dx (410)
p+ Jo
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When v = 2n, n an entire number, p & S =4 2 18 equivalent to zero. In fact

= i Gom)! e g @.11)

2—v
,OTS»-— v=2
2 m!

v—4
2

(4.11) is a polynomial in p~'. However, when the volume element is taken into
account that expression is transformed into a polynomial in p which according to
(3.10) is a null ultradistribution. Thus, in this case the second integral in (4.10)
vanishes and it becomes

F(p) = (271;27[ FoxT | O[3(p)le 5 IC, (- ix!12p1/2)

— O[3 iz (i 1/2)] dx (4.12)

Note that the complex Fourier transform (4.12) is not merely the Fourier transform
(4.5) in which the variable p is considered to be a complex number. Eq. (4.12)
gives the ultradistribution associated to f(p). In the next section, we shall see that
formulas (4.5), (4.2) can be generalized to Minkowskian space.

When f is a spherically symmetric distribution of exponential type, we can
use (4.10) to define its Fourier transform. In addition, we can follow the treatment
of Gel’fand and Shilov (1964) to define the Fourier transform. Thus we have

/0 F(P)p(p)p T dp = 2r)’ /0 FO))x T dx (4.13)

The corresponding tempered ultradistribution in the one-dimensional complex
variable p is obtained in the following way: let g(¢) be defined as

o) = f Flo)e " dp @.14)

2m)”
Then

00 0
F(p) = ®[3(;0)]/ e’ dr — @[—3(0)]f 2()e'" di (4.15)
0 —00

or if we use Dirac’s formula

t
F(p) = — / &dt (4.16)
2ri
The inversion formula (v = 2n) for F(p) is given by
A b4 v
JO) = ——5—= jg F(p)p'T 32 (x" 2" dp 4.17)
QRr)yzx7 Jr 8
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Note that the factor multiplying F'(p) is an entire function of p for v = 2. In this
case the first term of (4.13) takes the form

75 F(p)p(p)p' T dp = 2r)’ /0 FO))x'T dx (4.18)

We can now define a spherically symmetric tempered ultradistribution as the
complex Fourier transform of a spherically symmetric distribution of exponen-
tial type. Note that a spherically symmetric ultradistribution is not necessarily
sphericallysymmetric in an explicit way.

We give now same examples of the use of Fourier transform.

Examples. As a first example we calculate the complex Fourier transform of e
(where a is a complex number) for v = 2n. From (4.12) we write

Qm)T [ n a2 o .
Fp)= "5 f e % {Ore T I (—ix' 01
pF 0
— O-3(Pe T I ix'p' ) dx | (4.19)

Now

rev) pv
T (42) (0" —ia)

o0
/2 v=2 . in(v+2)
/ e x4K%(—1x1/2p1/2)=2ﬁe 7
0

v—1 v+3 a—ip'?
Fiv, , , >0
< (v ) aw)
re)  p+

P () @ i)

o
1720 v=2 . _in(v+2)
/ e x4K%(1xl/2pl/2)=2ﬁe 7
0

( v—1 v+3 a+ip'/?
xF|v,

3 ,a_ip1/2>J(p)<O (4.20)

To obtain (4.20) we have used 6.621, (3) of Gradshtein and Ryzhik (2000) (here
F is the hypergeometric function). Then we have

rv) { OII ()] ( v—1 v+3 a—ip1/2>

F(p) = (47) 7 i

r) L2 —ia) 272 Ta+ip”
O[—J ()] v—1 v+3 a+ip'/? 491
(P72 +ia) 27 2 Ta—ipl (4.21)

As a second example we evaluate the Fourier antitransform of [—27i(p — u?)]™!
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where p is a complex number and v = 2n. Using (4.17) we have

v=2

A i p 1/2 172
T 22 . T d
f(X) (27{)%)(% fi—‘ 27-[[(,0 _ /,Lz) 22 ()C P ) 0

v=2
T 2 _—

= o T (4.22)
T) 2

We can test the result (4.22) by transforming it. Taking into account that for v even
in(v

-2)
‘7# =e¢ 2 J%.Thus

v=2
in(v=2)

Fip) = 1™ f T ux' 2 [OLT ()l ¥ K (ix' 2
O _

—®[—J(p)]€%/C%(ixl/zpl/z)} dx (4.23)
Now
* 12 - 172 .1)2 m6v 2y p%
/ T s (ux o2 (—ix Zp T)dx = e 5 7 P Mz; J(p)>0
) _
4.24)
. R
/ T 2 (ux .2 (ix 2 p'?) dx = T pp 4M2; J(p)<0
o _
where we have used 6.576, (3) of Gradshtein and Ryzhik (2000) Then we have
1
Fop)=—— 4.25
(0) i — 1) (4.25)

As a third example we give the Fourier transform of §(x — a) for all v. Using (4.10)
we obtain

% [OLT (e ¥ Koz (=ia 2
— @[_J(p)]e%x%(ml/zpl/z)]

AT S 2 (a?p'?) (4.26)

The reader can verify that cut of (4.26) along the negative real axis is zero.

5. THE FOURIER TRANSFORM IN MINKOWSKIAN SPACE
For the Minkowskian case we begin with the formula

(2;1)_

f ko, k) = / / £ (xo, r)r T \s(/a)e“(OA dx° dr 5.1
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that can be rewritten as

2 =3 00 oo o0 poO . .
! (k(z’_k2)=(:“);3 / f / f Fe T T (ks
2 —00 J—00 J—00 J —00

xe®dr dx ds° ds (5.2)

Now
v=3
o . 1 /k\ 72 v rmv— 2
/ 5T T mksyds =5 (2] @+i0)TLBETE (53)
o p 2\2
oo L2 0 1 4"(% pie
/ efltx()elkgs dSO:\/;(t—l'O)iiel(Iix) 5.4

o0

We have used 6.631, (4) and 3.462, (3) of Gradshtein and Ryzhik (2000). Then we
obtain for (5.2): with the results (5.3), (5.4) we obtain for (5.2)

(g —#2) = (2”) Jre / / f(x)[e M

iy . i(k 7k2) .
T L P ] dx dt (5.5)

=

We can evaluate the integral in the variable ¢

0 : 10)'5
/ e ef i dr = 25%16%[—10 +i0)'2(p +i0)'/?]

0 +i0)7
(o ) (5.6)

00 _ ! v=2
f et = 28T IO T g i — i0)V2(p — i0)2)
0 (p—i0)T ?

where p = ké — k2. (Here we have used 3.471, (9) of Gradshtein and Ryzhik
(2000).) Thus (5.5) transforms into

o (X 4+ 10)' T , ‘ .
= m’c¥[—l()€ +i0)2(p +i0)!/2]

fp)= Q)T f f(x)!e

-y (X — lO)_

e T —
(p—i0)7

The corresponding inversion formula is then given by

—z[l(x—l())l/z(p i0)'/21t dx (5.7

f) Wz/ fp )! s (p +i0)F Koz [—ix +i0)(p +i0)?]
(271) 2 10) .
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in2-v) (p 10)
e 4 —
(x — 10)_

‘z[l(x—10)1/2(,0 i0)'/21t dp (5.8)

Formula (5.7) is the generalization of Bochner’s formula (4.1) to the Minkowskian
space.

In this case the extension as ultradistribution of f(p) to the complex p-plane
is immediate

F(p) = @m)'F / f‘(x){@[mpne"”(i”%lc%[—i(x+io>1/2p1/2]
—oc0 p
a0 E T e i - iO)‘/zp‘/z]} i 59)
P

Here we have taken p = y +io and

/ /2 2 [_ /2 2
12 _ W.,_isgn(a) Hfm (5.10)

Now we can define a Lorentz invariant tempered ultradistribution as the Fourier
transform of a Lorentz invariant distribution of exponential type. Note that a
Lorentz invariant tempered ultradistribution is not necessarily explicitly Lorentz
invariant. When f is a Lorentz invariant distribution of exponential type, we can
use (5.9) or to adopt the following treatment: starting from

f f / FO)b(p, K d*k = @2r)" / f / / FOd, x0) d'x 5.11)

can be deduced the equality

r=3
2

/ F0)b(o, KO — p),> dp dk® = / FOb, x%) (x = 23) T dx dx®

(5.12)
Let g(¢) defined as

8 = / F(o)e " dp (5.13)

Then

oo 0
F(p) = ®[3(p)]/ 2)e" di — @[—3(0)]/ 2()e" di (5.14)
0 —00
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or if we use Dirac’s formula

F(p) = L h &dt (5.15)
2wi J_ ot — p

The inverse of the Fourier transform can be evaluated in the following way: we
define

68 = —— § Fio {— CEDT 4 i0) 0+ A
Q2m)= x+i0)7T 2
eWngﬁi%Kuﬁu—NWWp—AWﬁrm (5.16)
(x —i0)T 2
then
f)=G(x,i0") (5.17)

Examples. As a first result example we consider the Fourier transform of the

. 2_ .2 . . .
function ¢V ¥0—"*| where a is a complex number. The Fourier transform is

V=2 o 1 iT(r=2 10 %
F(p)=Qn)7 / . {®[3<p>1e‘4 OO g i+ i0)0112
—00 pT 4
oy (X — i0)' 7T
—@pg@ne%)QL%%LLK\qxx—ﬂwﬂwﬂddx (5.18)
P+ :

Now

in(v=2 *° " ve
e >/ e""“i(x+i0)TZIC%[—i(x+iO)1/2pl/2]

[ee]

IND) s v—1 v+3 a—ip'/?
(#)(pl/z—ia)" T2 7 2 Ta+ipl

r'w) e v—1 v+3 a+p'/?
()P +ay 72 72 Ta—plP

:2‘77-[
\/_F

—2‘2"ﬁr ):m >0

(5.19)

in@—v © 1 v
e%J/ wmxpdm%n%uu—mW%W]
—0Q

iny

r'w) e 2 v—1 v+3 a+ip'/?
() (2 +iay 7 2 7 2 Ta—ip!'?

=21/
«/_F
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2iE r'(v) e ( v—1 v+3 a+p'?

, , <0
F () (12 +ay 27 2 a—p1/2>‘7(p)

(5.20)

To obtain (5.17) and (5.18) we have used 6.621, (3) of Gradshtein and Ryzhik
(2000). With these results we have

F (V v=l 43 a—{xﬂ“)
vt [ imy > T2 0 T2 72
Fio) = )T =00 Y or7(py1e ® AL
r (%) (p'/2 —ia)
. ) 1/2 L ) s 1/2
F (V, %» %7 Zt51/2) @[ ~( )] i F (V, %» %’ Zt;f;l/z)
— j— f— e 2
(P72 + a)y Jlp (02 +ia)
S ) 1/2
F (V, %» %, ZJ_rZuz)
(5.21)

(p'? +a)

As a second example we evaluate the Fourier transform of the complex mass
wheeler’s propagator.

. v=2
1T U2 %

1/2
wpu(x) = G T o (uxi?) (5.22)
Then according to (5.9)
(W' [ o
Walp) = == / T 2 (ux'?) [®[J(p)] I (—ix'p'?)
0 p4 <
in(2—v)
e 4
— O[-3(P)]— Kvg(ix”zp‘/z)} dx (5.23)
P4

Taking into account that (see 6.576, (3), Gradshtein and Ryzhik, 2000)

)

v
2-y  in6=v) P 4

[o¢]
T o (ux K (—ix 2 p' Py dx = 277 e
0 : 2 — u?

v=2
inv=6) 0 4
4

p — u?

J(p)>0

&) ,
/ T o (i 23 p! Py d = 2™ e T(p)<0
0 2

(5.24)
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we obtain

Wo(p) = ngnEJL/)Z)]

As a third example we evaluate the transform of 8(xg — r2). From (5.12) we obtain

(5.25)

/ F@)Bo k) (K — p) * dpdk® = (2)" / ¢0, xH P dx® (5.26)

According to (5.1) we can write

172

b =27y (5 - x),7 [ 00007 1 [0 0 (6 - )]

x(k2 = p)* ¢ dk" dp (5.27)

and consequently

30,20 = 27 @y )% / B0 AOT o 112 (kG — )]

S R (5.28)
Then

r=3
7

@) / (0, XX 2dx® = 27 2m)'T / B0, 1) (8 = p)

o v=3 127
x [/_ WO X T [|x0|1/2 (k2 —0)" ]ek""odxo:| dk’dp  (5.29)

[e.¢]

But
o v3 124 ifox0
/ WO T s [0 (kg — p) 1™ dx”

o0

L2 (22 [ 4 i 4 e - i) ] (5.30
—ﬁ<2>[ Yo +i0)7 +e (,0—1)](-)

(See 6.623, (1), Gradshtein and Ryzhik, 2000) from which we deduce that

2) iT2—v)

(4m)T <v —2) et =5
- r _— 531
1= 2 [(p —i0F —i@T} oy

Using then [(5.13), (5.14)] or (5.15), the corresponding ultradistribution is

F(p)=2""¢4m)7 F( > )Sgn[J(p)]( P (5.32)
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We proceed now to the calculation of the convolution of two spherically symmetric
tempered ultradistributions.

6. THE CONVOLUTION IN EUCLIDEAN SPACE

The expression for the convolution of two spherically symmetric functions
was deduced in Bollini and Giambiagi (1996) (h(k) = (f * g)(k))

4y 5L

h(k) = (= =2 / fk)g(k2)
(5 k
v=3
x [4k%k§ — (R =k — kg)z] " koo dky di 6.1)
+
and with the change of variables p = k2, p; = k?, p, = k? takes the form
2T
ho) = — 5= / F(p1)g(p2)
r(z)e
X [40102 — (0 — p1 — p2)1 dpy dp> 6.2)

In particular when v = 4 is
o0
g 1
h(p) = %/ Fe)gE)4p1p2 = (p = pr = p)*15dprdps  (63)
0

h(p) can be extended to complex plane as ultradistribution thus generalizing
the procedure of Bollini and Giambiagi (1996). According to (4.12) we can
write

Ao T
F6R0=5 5 ﬁ 1 ﬁf(pnc(pz)p}”pz”zm(x‘”p}/z)m( 12p,)dpy dpy
(6.4)
and Fourier transforming
FUW@ROI0) = 5= yﬁ b FEG
> {[0 1/2j ( 1/2 1/2).71()61/2,021/2)
x [O[I(PIC(—ix'p'?)
— O[-J(P)IK, (i x"?p'*)ldx} dpy dp, (6.5)

The x-integration can be performed with the result
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o0
/ T (20 ) T (6 2DV K (=i 0 ) dx
0

= —itppip)™ [ = o1 = p2 = V(o = p1 = 2 = 40122 | 3(p) > 0 (66)

o0
1/2 1/2 .
/ T1(x2pP) T 1 (x12 0, K1 (ix 2 V%) dx
0

= i(oop ™" [0 = o1 = p2 = Vo = p1 = 2 — 4P| I) < 0 (67)

where we have used 6.578, 2 of Gradshtein and Ryzhik (2000) and (7) p. 238 of
Erdelyi (1953). Thus

Hpy == f f F(p)G(p2)
4p Jr1Jra2

x[p= 1= 02 = o= p1 = ) = 4pip2 | dprdp:  (63)

13 > (el + [3(p2)]

In Bollini ef al. (1999) we have defined and shown the existence of the convo-
lution product between to arbitrary one-dimensional tempered ultradistributions.
Analogously for spherically symmetric ultradistributions we now define

Hx(p):ﬂf 7§ F(p)G(02)p) 0}
4p Jr1Jra

x [p —pi—p2 = —p1— p)?— 4,01,02] dpidpy  (6.9)

Let ¥ be a vertical band contained in the complex A-plane ®. Integral (6.9) is
an analytic function of A defined in the domain 3. Moreover, it is bounded by a
power of |p|. Then, according to the method of Gel’fand and Shilov (1964a), H,
can be analytically continued to other parts of ®. In particular near the origin we
have the Laurent expansion

o0
Hi(p)= ) H"(p)" (6.10)
n=—m
We now define the convolution product as the A-independent term of (6.10)
H(p) = H""(p) (6.11)

The proof that H(p) is a tempered ultradistribution is similar to the one given
in [3] for the one-dimensional case. The Fourier antitransform of (6.11) defines
the product of two distributions of exponential type. Let H;(x) be the Fourier
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antitransform of H, (p)

B =" A" (6.12)
If we define
S0y = F 1o F(p))
) L (6.13)
§(x)=F {p"G(p)}
then
A (x) = @n)* ,002,(x) (6.14)
and taking into account the Laurent developments of f and &
A=Y Foun
Vl=—mf
L= Y 2" (6.15)

n=—mg

‘We can write

00 00 n+mg
3 AD@N =)t Y ( > f””(x)?"‘“(x)) A" (6.16)

n=—m n=—m \k=—my

(m=my+myg)
and as a consequence

mg

A% = Y P ) (6.17)

l(:—WIf

We will give now some examples of the use of (6.11) and (6.17).

Examples. As a first example we evaluate the convolution of two Dirac’s delta

of complex mass
s Fp——
P TG =)

According to (6.9), (6.10), (6.11) we have
i 2
(0= i) w80 =) = 2 [t = 3 = (o = s = ) = 4wt

As an ultradistribution only the term containing the square root is different from
zero (cf. (4.11)). We then have

8(p—ui)*8(p—p3)= %\/(p—u% —13)’ = 433 (6.18)
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When p; = wy = m (m real) we obtain

8(p —m?) % 8(p — m?) =~ /o — dni?

4pl2

1037

(6.19)

As a second example we evaluate the convolution of two massless Feynman’s

propagators. We have

1
flp)=—
0
1
F(p) = T In(—p)
Tip
b e
Fi(p) = i In(—p)
i
A _ 1 L 1/2 12 .1/2
filx) = Wﬁ(—z—ml) 111(—,0)),0 T “p'")dp
22 (1 + A ) 22 7 (1 4+ A
— gx‘ikil — eln)“ Sin (nk)&xikil
472 (1 = )) 42T (1 = 2)

x[ir+2In2)+ Y (1 4+ 1)+ ¢ (1 —1) —In(x)]

where ¥ (z) = I''(z)/ T (2).

From (6.20) we have

with

Then

with

As a consequence

Taking into account that

Fr) = Qo) 2 4 (%)

Iim S3(x) =0
r—0

fix = Qo) x4 Th(x)

lim T;(x) = 0
r—0

FA) =@r)y

Fix2) = =n%In(p)

(6.20)

(6.21)

(6.22)

(6.23)
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we obtain

1 1 )
— % —=—1"1In(p) (6.24)
b p

7. THE CONVOLUTION IN MINKOWSKIAN SPACE

In this section, we deduce the formula for the convolution of two Lorentz
invariant functions and then we consider the central topic of this paper, i.e., the
convolution of two Lorentz invariant ultradistributions.

7.1. The Generalization of Dimensional Regularization in Configuration
Space to the Minkowskian Space

The convolution of two Lorentz invariant functions is given by

{(f =g (pp) = / f Flpu — k) g(k)d k (7.1

and can be rewritten as
o0 o0
f / Fagm)8Im — (pu — k)18 (2 — ko) dnydmpd*k - (7.2)
—00 —0oQ

We select the axis of coordinates in a way that the spatial component of p,,, p
coincides with the first spatial coordiante ( pi = p(z) - p%). Then we have

v—4

2 2
— 1+ 2+ 2pik
2|P | // f(m)g(m) |:( ) _k% — M dni dny dk,
0

4p3

(7.3)

Using

v—4 r (%) eiﬂ(%) © 3=y -
X7 = —/ (t —i0)T ¢ dt (7.4)
2 oo
with
2

x=—4piki +4pik (P —m+m) + (P —m+m) —4pin. (1.5

we can evalutate the integral in the variable in the variable k; using 2.462 (1) of
Gradshtein and Ryzhik (2000). The result is

ipy (ﬂ# 1+'72)

Vo [i (8ep2 —10)] e 7 (7.6)
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We can now perform the ¢ integration

= itp2 2 2_ 2
= 0 47 - P

=

(7.7)
Formula (7.7) is defined for v = 2n. In this case (7.7) is proportional to the deriva-
tive of the same order of the Dirac’s formula for
. [(Fﬁ R "2}
(tpi — iO)_7 e vl
with z = ie. Thus, we have

. 2
T (V—Z) ei”(i_“) 00 . l/ng[(n,zrvﬁnz) *417,%2}

I i) e 7
I (G i)
+(p, —i0) 21,7 e o dt (7.8)
The result of (7.8) is immediate (is a Fourier transform). We consider first the case
v#2n+1
i)

I_e 2 r v—2 r 3—v | |»~3
T a7 2 2 )P

, s
! |:(Pi_ﬁ1+ﬁz) —4p2n +i0} ;

x (pi —i0) 2
m

v=3
2 2 2 2
—n + —4
(p“ n 772) Pult2 _ iO] (7.9)

m

With this result we have for (7.3)

T mew 3— r
hp) = S 5T (TV) / / FP)g(p2)

X{ | [(p—pl—pz)2—4p1pz

v=3
T .
(p—i0)2 + iO} +em0?
Jo

| [(p —p1— ) —4dpip2

%
x (p +i0)"2 —iO] ,d,old,oz (7.10)
P
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where p = p; and h = f * g.
When v = 4 we have

h(p) = ;—p / / Fog(el(o — o1 — p2f — dprpali dpydps (T11)

When v = 2n + 1 we obtain

i (0= p1— ) —4o1p2 " -
h(p)=—m//f(m)g(pz)[ L= ‘ 2} {(p—zm z

0

(0 —p1 — p2)* —4p1p2
0

— o — )2 —4
_(p=p1=p) P102 +iOH}dp1 dpy (1.12)
Jo

x [¢(n)+i7”+1n[ +i0ﬂ —(p+i0)"2

im
x|:1p(n)+7+ln|:

As an example we will evaluate the convolution of §(p — m%) with §(p — m%) for
v # 2n + 1. In this case we have

v=3
v=3 2 2\2 2.2 z
T2 imer —m5 —m5) —4mim
" N (p—i0)7 [(p L= m) L2 —|—i0}
2v—1 0

h(p) =

v=3

. i —m2—m22—4m2m2 B
+ ™D (p 4i0)"2 [(p 1= m3) 2 0 (7.13)
0
Whenv =4, m; =0, m, = m we obtain
T
8(p) * 8(p —m*) = %m—mﬂ (7.14)

If we use the dimension v as a regularizing parameter, we can define the product
of two tempered distributions as

h(x,v) = @r) fx,Max,v) = Qo) FH{f(p, vIF Hg(p, v)}
=F " f(p,v) % glo,v)} = F Hh(p, v)} (7.15)

where F~! was defined in Section 5 by means of (5.8) and where (7.10) should
be reinterpreted as

JT‘T in@2—v 3—v r
hip,v) = 2\,,16(T)F< > )// f (o1, v)g(p2,v)
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v=3
_ _ 2 4 2 i
» {(p 0y [(p p1 — P2) p1p2 iO] T
yol

. [(p —p1— ) —4pip>

x (p +i0)"2 —iO] }d,o]dpg (7.16)
P

The same procedure is valid when f (x,v) and g(x, v) are distributions of expo-
nential type. Here f(p,v) and g(p, v) are defined by
L[ f@,v)

F(p,v) = —
(- v) 20 J oo t—p

1 ®© g(t,v
G(p,v) = —
(0. 7) 2wi J_ ot —p

dt

dt

where F and G are the tempered ultradistributions given by

F(p.v) =F(f(,v)})  G(p,v) = Fax,v)}
This procedure generalize to the Minkowskian space the dimensional regular-
ization in configuration space defined in Bollini and Giambiagi (1996) for the
Euclidean space. As an example of the use of this method we give the evaluation

of the convolution product of two complex mass Wheeler’s propagators. From
(5.22) and (5.9) we have

72 (uip)’T [ e
Fw (6, Vwale, v = —— L0 2 f AT T e (10T 2 (2x)
20 27> o ? 2

in(v=2 ir(2—v)

x ORI T I (—ixp') = O-F(Pe ™ Koz ivp' D dx - (7.17)
To evaluate (7.17) we use

| 7007 a0 ey d
0

2—v

N G B
VT2 up)'T

and to deduce (7.18) we have used

1 /zx\% > _, 22
Ki2(xz) =3 (—) ’ / tTie T dt
0

v—3
i o
[+ +m) —adu3] " a8

2\2
(see 8.432 (6) of Gradshtein and Ryzhik, 2000). Thus from (7.18) we have

20)T 3V e
FAw 1 (o, vIw o (x, v)} = (2n3?_,12 r < 5 V) e
2

w

v—

xp'? Sgn[ T (p)] [(P — 1t —ud) - 4"%“5] - 719
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and consequently

v+l

Qr) > 3—v\ imo-2
Wo(p, v) ¥ Wia(o, v)} = 21 r( 5 )e

v=3
2

x p'7 Sgn[ T (p)] [(P o Mg)z - 4”‘%”%] (7.20)

7.2. The Convolution of Two Lorentz Invariant
Tempered Ultradistributions

To obtain a expression for the convolution of two tempered ultradistribu-
tions we consider the formula (7.11). As a first step we extend A(p) as tempered
ultradistribution. For this pourpose we consider the function

1(p, p1, p2) = [(p — p1 — p2)* — 4p1p2l3 (7.21)
The Fourier antitransform of (7.21) is

e~ ipr1tpa)x

. p1. p2) = ——— {0162 + 102N [20p102 +i0)3 x]]
x|
+ ®(—plpz)v—p1szn(Ziv—plszXI)} (7.22)

where N is the Newman function. If we consider now the distribution

1
m(p, p1, p2) = p~'[(p — p1 — p2)* — 4p1p2]2 (7.23)

the corresponding tempered ultradistribution is

1
17t = p1 — p2)? — dp1p2]d dr
t—p

1 o0
M(p, p1, p2) = 7] / (7.24)
i J s

which can also be written as

1 .
M(p, p1, p2) = E{f{l}(p, o1, P2)

. A
S FABGO, p1s o) + FAUN=IO, o1, oI (7:25)

Thus the extension to the complex plane of #(p), N(p) is

Ny =7 / / F(o1)8(o2)M(p. prs p2)dpy dps (7.26)
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To obtain M in an explicit way we use the following Laplace transforms

2 2
Ll M@)) = V5 +an (E)

2s
+—n@2)+1-y) (7.27)
am
) 2 _
L{t™' T 1@@))(s) = % (7.28)

(see Brychkov and Prudnikov, 1989, pp. 310 and 313.) Then we have for the Fourier

transforms
2_ 2
{m(p)] [ T <4¢apw>
a

+ip(In(2Q)+1— y)] — O[-J(p)]

Flt1™ 'Nialth}p) =

2
ma

Vvar—p?+ip
/2 _ 2
X |: a P ln( P
—ip(n(2)+1— y)]} (7.29)
. a? — plip
Ft| " T (althDip) = 9[3(/?)]?
Vo S
oy (7.30)

With these results we obtain

M(p) = OLT (p)] {®(p1pz)\/4p1pz —(p — p1 — p2)?

o Vapip2— (o — p1 — p2)2 —i(p — p1 — p2)
2/p1p2

+ ®(—,01,02){ % [\/4,01,02 —(p—p1—p)?—i(p—p1— ,02)]

+/4p1p2 — (p — p1 — p2)?
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i 40102 = (p = p1 — p2)* —i(p = p1 = p2) | ”

2i/—p1p2

—O[-T (P O(0102)v/40102 — (0 — p1 — p2)?

Vapipr —(p — p1 — p2)* +i(p — p1 — p2)
2./P1p2

X In

+ @(—,01/02){ % [\/4;01,02 —(p—p1—p)?+i(p—p1 — ,02)]

+Apip — (0 = p1 = p2)?

n Vapip2 —(p — p1 — p2)2 +i(p — p1 — p2)
2i/—p1p2

[©(p12)(01 — p2) In (%) +O(=p1p2)(p1 — p2) In (—ﬂ>

i
_E L2
+ O(=p)O(E)lim(p1 — p2)Sgn(p1 + p2) + 2iTP2O(p1 + p2)
+2imp1O(=p1 — p2)] + O(p1)O(—p2)[—im (p1 — p2)Sgn(p1 + p2)
+2imp1O(p1 + p2) + 2imP2O(—p1 — p2)1} (7.31)

To obtain an expression for the convolution of two ultradistribution we use for the
Heaviside function the identity

O(xy) = OW)O(y) + O(—x)O(—y) (7.32)

Taking into account that

) 1
O(p) = lim ——[In(=p+ A) —In(—p — A)] (7.33)
A—i0+t 2771

aconceptually simple by rather lengthy expression is obtained for Lorentz invariant
tempered ultradistributions

1
Hy(p, A) = = / f F(o1)G(p2)p; 3 {O1T (p)]
872p JriJra

X { [In(=p; + A) —In(=p; — A)] X [In(—p2 + A) — In(—p2 — A)]

x/4(o1 + M)(p2 + D) — (p — p1 — p2 — 2A)?

i [/4(/)1 + M) o2 T A) —(p— p1—p2 — 287 —i(p — p1 — 2 —2A>}

2/(p1 + M)(p2 + A)
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+[In(p; + A) —In(p; — M)][In (2 + A) — In(p2A)]
x/4(p1 — M)(p2 — A) — (p — p1 — p2 + 2A)?

<1In [\/4(/01 —A)pr—A)—(p—p1—p2+2A)P? —i(p—p1—p2 +2A)i|

2J/(p1 — M)(p2 — A)
+[In(o; + A) —In(o1 — M][In(—=p2 + A) — In(—p2 — A)]

Xi% [\/4(/)1 +A)p2—A)— (o —p1 — p2)? —i(p— p1 —pz)]

+v4(01 + M)(p2 — A) — (o — p1 — p2)?

2i/=(p1 + A)(p2 — A)

+n(=p1 + A) —In(=p1 — M][In(p2 + A) — In(p2 — A)]

- [\/4(,01 TGN P i —m)} }

x i T [V =D+ M=o = pi =027 —i(0 = p1 = )]

+VA4(p1 — A)(p2 + A) — (p — p1 — p2)?

In [\/4(01 TNt D) o — P —i(p— o —pz)i| ”

2i/~(o1 — M(p2 + A)
—O[-T()H[In(—p1 + A) —In(=p1 — M)[In(=p2 + A) — In(—ps — A)]
X V4(p1 — M) (p2 — A) — (p — p1 — p2 +2A)

hn VA1 — A2 — D) — (0 — p1 — p2 + 202 —i(p — p1 — p2 + 2A)
2/ (p1 — A)(p2 — A)

+[In(p1 + A) —In(p; — M)lln(p2 + A) — In (2 — A)]
X V41 + M) 2+ A) = (p — pi — p2 — 2A)?

| VAL M2+ N) = (p—pr = p2 = 20P —i(p = p1 = p2 = 2A)
21 + A)p2 + A)

+[n (o1 + A) —In(o1 — M]n(=p2 + A) = In(—p2 — A)]

x { T [Vae =D+ M=o = pi = 027 —i(0 = p1 = )]

+VA4(p1 — M) (o2 + A) — (p — p1 — p2)?
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2i/—(p1r — M)(p2 + A)

+ [In(=p1 + A) = In(—p; — M][In(p2 + A) — In(pz — A)]

x In [\/4(01 — N2+ AN —(p—p1—p2)?*—i(p—pi — Pz):| }

x { = [Va + M0 = M) =0 = pi = 027 — (0 = p1 = )]

+V4o1 + A)pa — A) — (o — p1 — p2)?

xln|:\/4(,0|+A)(,02—A)—(P—Pl—Pz)z—i(P—Pl—Pz):| }}_l_

2i/—(p1 + A)(p2 — A)

x[In(—=p; +A) —In(=p; — A)][In(=p2 + A) — In(—p2 — A)]

e o1+ A [P — A ]
X - nfi +In|—i |—
(o1 — p2) i (1/,02-1-[\) ( ",02—A>_

+[In(p; + A) —In (o1 — M)][In (o2 + A) —In(p2 — A)]

i A= p . A+ ]
X (o1 —p2) | In|—i +In|i
1 i A—p At )]

+[In(o1 + A) — In(p; — M][In(—p2 + A) — In(—=py — A)]

[ A+ p A —p
X{(Pl - p2) |:ln( m)-l—]n( A+p2):|

P1 — P2
2

—In(o1 + p2 + Ml +1n(o1 + p2 — M+ p2lIn(—p1 — p2 + A)

—

+

[In(=p1 —p2+A) —In(=p; — p2 — A)

—In(=p; — p2 — M)+ pilln (o1 + p2 + A) —In(p1 + p2 — M}

x [In(=p1 + A) = In(=p1 = M][In(p2 + A) — In(p2 — A)]

A—p A+ p
X{(pl —/02)|:1ﬂ( A+p2>+ln< A—p2)1|

L1 — P2

+ [n(o1 + p2 + A) = In(p; + p2 — A)

—In(=p1 — 2+ A) +In(—p1 — p2 — M) + pilln(—=p1 — p2 + A)
—In(—p1 — p2 — M)+ pa2[ln (o1 + p2 + A) —In(p1 — p2 — A)]} } }dpldpz

(7.34)
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which defines an ultradistribution on the variables p and A for

T ()l > T(A) > [T (pDl + 1T (p2)]

Let 98 be a vertical band contained in the complex A-plane P. Integral (7.34) is
an analytic function of A defined in the domain 8. Moreover, it is bounded by a
power of |pA|. Then, according to the method of Gel’fand and Shilov (1964a),
H; (p, A) can be analytically continued to other parts of . Thus we define

H(p) = HO(p,i0") (7.35)

(&%
Hy(p,i0%) =) H"(p,i0")A" (7.36)

—m
As in the other cases we define now

{F*G}(p) = H(p) (1.37)

as the convolution of two Lorentz invariant tempered ultradistributions. The proof
that H(p) is a tempered ultradistribution is similar to the one given in Bollini ez al.
(1999) for the one-dimensional case. Starting with (7.34) we can write

1 o0
H;(p,i0%) = _5/ /fx(p])gx(pz)/\/l(p,m,pz)dpl dp2 (7.38)

where f5(p) and g,(p) are defined by Dirac’s formula
L[ £ L[ &)
PF(p) = 5— f S dt PG = 5— -
2wl J_ ot — p 2wi J_ ot — p
Let 1, (x) be the Fourier antitransform of H,; (p, i01). The according with (6.12)—
(6.17) we can express H @ (x) as a function of de Laurent developments of f; (x)
and 2, (x).

dt (7.39)

Examples. As an example of the use of (7.35) we will evaluate the convolution
product of 8(p) with §(p — ?) with i = g + ip; a complex number such that:
;L% > ,u?, urir > 0. Thus from (7.34) we obtain:

o2 2
’Ho(p,A)z—irrln(—,uz+A)—ln(—u2+k)]{l(p M)|:ln< pP—K )

872p VAW + A)

I uwr—p N uwr—p
V=AW?+ A) l6mp

—in[ln(—u*+ A) —In(—p? + )]

Bl Y O B S T A w 7.40
x 872p 1 ur+ A +in A—u2]| 16mp (7.40)
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Simplifying terms (7.47) turns into

i(p — u?)

e [In(p — u?)

Ho(p, A) = —in[In(—p* + A) — In(—p* + A)]{

+1In (2 — p)] + 8l,fp [In (1 + A) + In (1% — A)]} (7.41)

Now, if

Fi(, A) =In(—* + A) —In(—p* — A)
then

Fi(,i07) =2im; ui > ui: pwrir >0
And, if

Fy(u, A) = In(u? + A) — In(u® — A)

then

Fo(u,i0") =0; pp> ui; prir >0

Using these results we obtain
i(p— u? in?
H(p) = ———[In(p — u*) + In (* — p)] + — In(?) (7.42)

4p 2p
As an example of the use of (6.17) we will evaluate the convolution product of
two Dirac’s delta: §(p) * 6(p). In this case we have

A=l

P
Fi(p) = — 7 (7.43)
i
and as a consequence
sin(zwA) ,_
filp) = Tﬂf ! (7.44)
The Fourier antitransform of (7.44) is
A 22T 4+A) . _ 1 a1
Falx) — 2TA—N x4 = cos(max Tt (7.45)
which can be written as
" 224 T(1 + 1)
Ja) = st =

cos(rr) — 1 . 1 —a—1 -1
X fS(x) +x —cos(mA)x_ + S — cos(mA)S_

(7.46)
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Thus we have

Fix) —

4 2 -1y
2% T2(1 4 1) I (cos(d) — 1) 82(x) + x3% + cos*(TA)x_?

1675 T2(1 = 1) »
+ 547! = cos(a) S+ 206! — cos(wa)xC']

x [S77" = cos(rA)S 1] 4 2 [Mau)}

A
x [x;' —cos(maxZ! + 5777 — cos(wa)SZH! } (7.47)
From (7.47) we obtain
lim f2(x) = ix—z (7.48)
-0’ Qn)° ’
and taking into account that
7.[3
Fix %) = - Sen(p) (7.49)
we obtain
T
3(p) * 8(p) = ESgn(p) (7.50)

8. DISCUSSION

In a earlier paper (Bollini ez al., 1999) we have shown the existence of the
convolution of two one-dimensional tempered ultradistributions. In other paper
(Bollini and Rocca, hep-th) we have extended these procedure to n-dimensional
space. In four-dimensional space we have given an expression for the convolu-
tion of two tempered ultradistributions even in the variables k° and p. In this
paper we obtain a expression for the convolution of two Lorentz invariant tem-
pered ultradistributions in both, Euclidean and Minkowskian space. In an inter-
mediate step of deduction we obtain the generalization to the Minkowskian space
of the dimensional regularization in configuration space (Bollini and Giambiagi,
1996).

When we use the perturbative development in quantum field theory, we have
to deal with products of distributions in configuration space, or else, with convolu-
tions in the Fourier transformed p-space. Unfortunately, products or convolutions
(of distributions) are in general ill-defined quantities. However, in physical ap-
plications are introduces some “regularization” scheme, which allows us to give
sense to divergent integrals. Among these procedures, we would like to mention
the dimensional regularization method (Bollini and Giambiagi, 1972; Hoott and
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Veltman, 1972). Essentially, the method consists in the separation of the volume
element (d” p) into an angular factor (d2) and a radial factor (p”~! dp). First the
angular integration is carried out and then the number of dimensions v is taken
as a free parameter. It can be adjusted to give a convergent integral, which is an
analytic function of v.

Our formula (7.34) is similar to the expression one obtains with dimensional
regularization. However, the parameter A is completely independents of any di-
mensional interpretation.

All ultradistributions provide integrands (in (7.34)) that are analytic functions
along the integration path. The parameter A permits us to control the possible tem-
pered asymptotic behavior (cf. Eq. (3.9)). The existence of a region of analyticity
in A, and a subsequent continuation to the point of interest (Bollini ef al., 1999),
defines the convolution product.

The properties described below show that tempered ultradistributions pro-
vide an appropriate framework for applications to physics. Furthermore, they can
“absorb” arbitrary pseudo-polynomials, thanks to Eq. (3.10). A property that is
interesting for renormalization theory. For this reason and also for the benefit of
the reader we began this paper with a summary of the main characteristics of
n-dimensional tempered ultradistributions and their Fourier transformed distribu-
tions of the exponential type.

As a final remark we would like to point out that our formula for convolutions
is a definition and not a regularization method.
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